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STUDY OF THE DYNAMICS OF A VIBRATION MACHINE CONSIDERING THE 
INFLUENCE OF THE PROCESSING MEDIUM 

 ABSTRACT. This paper presents the results of studying the dynamics of a vibration machine, taking 
into account its interaction with the processing medium based on representing the medium as a continuous 
system. The application of the complex number method significantly simplifies the formation of equations of 
motion for the discrete-continuous system, which is a computational model of the vibration system "machine-
medium." The study substantiates and develops a method for considering the mutual influence of the ma-
chine and the processing medium, based on representing the medium as a continuous system. The dynamics 
of the vibration system "machine-medium" is studied, and oscillation parameters are determined without 
considering resistance forces. It is found that the overall motion of the vibration system is described by four 
components. The first three describe the natural oscillations of the system, of which the first two are deter-
mined only by initial conditions, and the third reflects the accompanying oscillations caused by the external 
force applied to the system. The last component defines the forced oscillations following the external force's 
change law. This result shows that the oscillations of the vibration system are not strictly harmonic, which is 
confirmed by the provided graphs. The dynamics of the "machine-medium" vibration system, considering 
resistance forces, are studied, and analytical dependencies for determining oscillation amplitudes and natural 
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and resonant frequencies are obtained. The results of the amplitude calculations of the vibration platform for 
various heights of compacted concrete mixtures reveal the influence of the resistance coefficient and the 
ratio of oscillation frequency to the wave propagation speed in the mixture. Analysis of the obtained graphs 
shows that the resistance coefficient has a different effect on the amplitude of oscillations for different heights 
of the compacting mixture. Certain mixture height zones of the vibration system "machine-medium" operate 
in a near-resonant mode. A significant influence on the amplitude is exerted by the wave propagation speed, 
which is included in the analytical formulas for determining the numerical values of the coefficients accounting 
for reactive and active components of resistance.  

 Keywords: complex number method, vibration machine, discrete system, concrete mixture, contin-
uous system, joint motion, resistance forces, oscillation parameters, amplitude, frequency. 

  

1. Introduction. Modern demands in the construction industry require minimizing energy 

consumption while achieving high-quality execution of technological processes during the for-

mation of concrete and reinforced concrete products. The dominant process in the production of 

these products is the compaction of concrete mixtures using vibration technology. Ensuring effec-

tive operating modes and parameters requires using computational models that adequately reflect 

the real process of vibration compaction. However, in practice, the full achievement of such condi-

tions is constrained by discrepancies between calculated and actual parameters. This is due to the 

complexity of the processes occurring in the compacted mixture and the use of empirical formulas 

that are reliable only within the framework of the assumptions and conditions under which these 

studies were conducted. Moreover, resonant operating modes, which are the most common, are also 

energy-intensive. Therefore, finding more effective research methods and developing algorithms 

and calculation methods is a relevant task. 

 2. Literature Review and Problem Formulation. The complexity of the processes occur-

ring in the compacted mixture under the action of vibration is the reason for various modeling meth-

ods, assumptions, and parameter evaluations of efficiency. In [1], when calculating a vibration ma-

chine for manufacturing flat concrete slabs, a discrete model was used for both the machine and the 

compacted mixture, providing a simplified methodology for calculating parameters. The process of 

compacting cement concrete mixtures in a harmonic mode is presented in [2]. Studies on the dy-

namics of vibration technology in processes of crushing, sorting, and compacting using both discrete 

and continuous models are presented in [3,4]. The use of vibration technology for concrete compac-

tion is discussed in [5]. An analysis of the cited works demonstrates the dominance of studies fo-

cused on the steady-state operation of vibration technology. The challenge remains to explore more 

efficient research methods that take into account the influence of the processing material, which is 

the primary objective of this study. 

 3. Research Objectives. The goal of this research is to determine the parameters of a vibra-

tion machine considering the influence of the processing medium, represented as a continuous sys-

tem. To achieve this goal, the following tasks were set: 

- develop a discrete-continuous model for the motion of the combined dynamic system "vibration 

machine – compacting medium"; 

-  study the dynamics of the "machine-medium" vibration system and determine the parameters 

without considering resistance forces; 

- study the dynamics of the "machine-medium" vibration system and determine the parameters con-

sidering resistance forces. 

 4. Research and Determination of the Parameters of the Vibration Machine Consider-

ing the Influence of the Processing Medium Represented as a Continuous System. 

 4.1. Development of a Discrete-Continuous Model for the Motion of the Combined Dy-

namic System "Vibration Machine – Compacting Medium". To compose the motion equation 

of the machine, considering the influence of the processing medium, the method of complex num-

bers is applied [3]. The computational diagram of this system is shown in Figure 1. 
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Fig. 1. Computational diagram: a - vibration machine;  

b - vibration system "machine-medium". 

The natural motion of such a vibration machine is described by the following equation of 

motion [1]: 

0 cos( )m m mm x b x c x F t + + = + ,    (1) 

where the first term mm x  epresents the inertia force of the moving mass, and the other terms: mb x

- represent resistance forces, mc x - stiffness, and the external force. 0 cosF F t=  To apply the 

method of complex quantities in equation (1), we replace: tF cos0  with 
tieF 

0  and substituting 

tieX 
instead of x, we obtain a formula that relates the complex amplitudes of forces: 

2

0( )m m mX m i b c F − + + =          (2) 

The complex quantity in the brackets of equality (2) is the complex, dynamic rigidity of the 

system. Let's denote it by mK ; Then equality (2) can be written as follows:  

( )2p a

m m m m m mi c m ib  =  +  = − + .        (4) 

Here 
p

m = ( )2

m mc m − - the reactive component of resistance; 
a

m = mb  - the active com-

ponent of resistance. Therefore, the magnitude of the complex amplitude of the force X  is equal 

to the amplitude  of the force F0 divided by the dynamic stiffness of the system mK : 

0mX K F =  або 0

m

F
X

K
= .      (3) 

If in any oscillatory system there is mass, elasticity, and resistance (discrete system), then it 

is obvious that any layer of the processing medium (continuum system) has the same properties 

Then the reactive  
р

с  and active 
a

с  components of the dynamic rigidity of the medium will be 

distributed throughout its volume. Thus, the dynamic rigidity of the "machine-environment" system 

can be represented on the basis of the use of the rule of addition of complex quantities:  

( ) ( ).а

с

а

м

р

с

р

мсм і +++=+=      (5) 

Knowing the system’s dynamic stiffness allows determining the system’s response
*хR = . 

From the condition of dynamic equilibrium, we derive the displacement law of the "machine-me-

dium" system: 

.
||||

00*

cм

titi eFeF
х

+
=


=



     (6) 
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Thus, the problem of considering the processing medium reduces to determining the active 

and reactive forces in the contact zone and incorporating them into the motion equation of the hybrid 

dynamic system. In [3], analytical dependencies were obtained for the coefficients accounting for 

wave phenomena in the continuous system in discrete form: 

( ) 2 2

2 sin 2
;

2 cos2

sh h h
a

h ch h h

   

   

+
=

+ + ( ) 2 2

sin 2 2
,

2 cos2

h sh h
d

h ch h h

   

   

−
=

+ +
  (7) 

where 𝑎 -  is the coefficient accounting for the influence of reactive forces in the medium, and  

d is the coefficient accounting for the influence of active forces in the medium. 

Thus, the equation of motion for the "machine-medium" system (Figure 1b) will havethe 

following form: 

0( ) ( / ) cos( )m c m mm m a x b d x c x F t  + + + + = +     (8) 

The solution of equation (8) in the form: ( )0 cosx x t = +  we obtain the expression for 

the amplitude of oscillations, xo, of the "machine-environment" system: 

( ) ( )

0
0

2 22 2 2 2 2

,

( ) ( )m m c m c

F
x

c m m a b m d   

=

− + + +

    (9) 

where the denominator (9) represents the dynamic stiffness of the "machine-medium" system in its 

explicit form: 

К= ( ) ( )
2 22 2 2 2 2( ) ( )m m c m cc m m a b m d   − + + +     (10) 

4.2. Study of the Dynamics of the "Machine-Medium" Vibration System and Determi-

nation of Parameters Without Considering Resistance Forces. Figure 2 presents the computa-

tional diagram of the "machine-medium" vibration system without considering resistance forces. 

 

 
Fig. 2. Computational diagram of the "machine-medium" vibration system without considering resistance 

forces. 

In this case, the equation of motion for such a "machine-medium" system is: 

0 cos ,mm c x F tx + =       (11) 

where  m= .m cm m a+  

Equal (11) is converted by dividing each term by the mass: 

0

2

0

1
cos ,x F t

m
x  + =        (12) 

where 0 - is the natural frequency of the "machine-medium" system. 
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0

mc

m
 =                (13)  

The solution to equation (12) is given by [1] and consists of two parts: 

2 01 0 0( ) cos sin cos .x t А t А t x t  = + +                              (14) 

Solution(14) takes into account free oscillations 1 0 2 0cos sinА t А t +  and forced oscilla-

tions 0 cosx t ;
1A , 

2A  are constant integrations, which can be defined by substituting the initial 

conditions into the integral:  

 0( 0) , ( 0) .x t x x t x= = = =            (15) 

Substituting the solution (14), which includes forced oscillations, into equation (12), we ob-

tain the formula for the oscillation amplitude in the steady-state mode: 

( )2 2

0 0 0/х F m  = − .            (16) 

Taking into account equation (16), the general solution (14) becomes: 

( )
1 0 2 0 2 2

0

0

cos
( ) cos sin

F t
x t А t А t

m


 

 
= + +

−
          (17) 

The derivative of equation (17) with respect to time gives the expression for the velocity of 

the "machine-medium" vibration system: 

1 0 0 2 0 0sin cosА t А tx    = − + − 1
( )2

0

2

0

sin .
F

t
m




 −
       (18) 

Now we can obtain the expressions of the coefficients 
1A , 

2A  by substituting the initial 

conditions (15) in the solution (17) and (18) we have: 

( )
1 0 2 2

0

0 ;
F

x
m

А
 

= −
−

 0
2

0

А
x


= .    (19) 

Finally, we can write the equation describing the motion of the "machine-medium" vibration 

system: 

( )
0

0 0 0 02 2

0

0 0

( ) cos sin cos
x F

x t x t t t
m

  
  

= + −
− ( )2 2

0

0 cos .
F

t
m


 

+
−

  (20) 

The resulting dependence (20) shows that, in general, the motion of a vibrational system is 

described by three terms. The first three terms describe the proper oscillations of the system, of 

which the first two are determined only by the initial conditions, and the third reflects the concom-

itant oscillations by the external force applied to the system. The last term of expression (20) defines 

forced oscillations according to the law of change of external force. Forced oscillation frequency  

and natural oscillation 0  frequency are different from each other, so the oscillations described by 

expression (20) are not strictly harmonic, which is confirmed by the above graphs (Fig. 3), where

ах  and 0 is the amplitude and the initial phase of free oscillations  



Випуск/Issue 40, 2024  

 23 

 
Fig. 3. Graph of the combined oscillations of the "machine-medium" vibration system without considering 

resistance forces. 

Thus, the total oscillation of the system (1.1) consists of the sum of the unquenchable natural 

oscillations that last indefinitely and the forced oscillations that last during the time of the external 

force. Simultaneously with the forced oscillations, the accompanying oscillations also cease. The 

amplitude of oscillations 0x  and the phase angle 0 are determined by the following formulas: 

( )

( )

2
2

0
0 2 2

00

0 02 2

0

0

0

0

0 ;

a

F x
x x

m

F
x

m
arctg

x

 


 



   
 = − +  

−    

 
 −
 −
 =

           (21) 

The following conclusions can be drawn from the formulas obtained. 

1. Provided that the frequency of forced oscillations  is less than the frequency of natural 

oscillations 0 , 0   the amplitude of forced oscillations 0x is in the same phase with the external 

force 0F , which, with the component of the inertial forces of the system, is balanced by the elastic 

forces. That is, the system is in the pre-resonance zone.  
2. Provided that the frequency of forced oscillations  and intrinsic 0  oscillations is equal.:

 = 0  Resonance occurs in the system, which makes it possible to obtain oscillations of the sys-

tem with large amplitudes at minimum values of the amplitude of the external force.  

3. Provided that the frequency of forced oscillations  is greater than the frequency of nat-

ural oscillations  0 , 0   the amplitude of forced oscillations 0x is in the opposite phase with the 

external force 0F , which is balanced with the elastic forces by the inertial forces of the system. That 

is, the system is located in the resonance zone. Forced oscillations coincide in phase with the forcing 

force, and when 0    are in the opposite phase.  
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4.3. Study of the Dynamics of the "Machine-Medium" Vibration System and Determi-

nation of Parameters Considering Resistance Forces. The motion of the vibration system "ma-

chine – medium" taking into account the resistance forces (Fig. 1, a) is described by the above 

equation (1), which, after dividing by the mass of the system, will look like this: 

2

02 cos( ),aF
h x t

m
x x   + + = +     (22) 

where h is  the energy dissipation coefficient:  h = b/2m 

The solution of equation (22) is as follows 

( )0 01 2 0( ) cos sin cos( ),htх t А t e x tА t   −= + + −    (23) 

Where the coefficients 1 2,А А  are already defined above(19); 0х , is still the amplitude of 

forced oscillations;   - the phase between the external force and the amplitude of forced oscillations 

of the vibration system. 

By substituting solution (23) into equation (22) after simple transformations, we obtain for-

mulas for determining the amplitude of oscillations ах  and phase 

( )
2

2 2 2 2

0

2 2

0

;

4

2
.

a
a

F
x

m h

h
arctg

  




 


= 

− + 



= 
− 

     (24) 

Substituting (24) 1 2 0, , ,оА А х і   into equation (23) we obtain an expression describing the 

general motion of the system: 

( )
( )

( )
( )

0 0
0

1

2

02
2 2 2 2

0

2 2

0
2

0

2

0

2 2 21
0

0

2

0

( ) cos sin

cos

4

cos( )
sin .

4

ht

ht

a

a

x h x
x t x t t e

F e
t

m h

F th
t

m h

 


  
  

 
  


  

−

−

 +
= + − 
 

− − +
 − +

  

 −
+ + +

 − +

    (25) 

In equation (25), the structure of the general solution is similar to that in equation (20): the 

first term represents the initial free oscillations, determined only by the initial conditions; the second 

term represents the accompanying natural oscillations determined by the external force, and the 

third term represents the forced oscillations. The difference between solution (25) and solution (20) 

lies in the presence of terms accounting for energy dissipation in equation (25). In such a system, 

the natural oscillations decay quickly, and only the forced oscillations remain in the system (Figure 

4). 

Over time, only forced oscillations remain in the system, described by the following expres-

sion: 

( )
2

2 2 2 2

0

cos( )
( )

4

aF t
x t

m h

 

  

−
=

− +

     (26) 
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Fig. 4. Graphs of oscillations in the "machine-medium" vibration system considering resistance forces: I - 

decaying oscillations; II - forced oscillations; III - combined oscillations. 

The resonant frequency, considering resistance forces, is determined by the formula: 

2 2

p 0 2 .h = −       (27)  

From this formula it follows that the resonant frequency p  is less than the natural frequency 

0 : p < 0 , which is evidenced by the above graph (Fig. 5) 

 
Fig. 5. Graph of changes in oscillation amplitude depending on frequency for different values of the energy 

dissipation coefficient. 

Now, let us determine the degree of influence of coefficients (7) representing the reactive 

and active components of resistance in the compacting medium on the amplitude of oscillations in 

the vibration machine (9). Figure 6 presents the results of calculations regarding the influence of the 

resistance coefficient γ and the ratio of oscillation frequency to wave propagation speed c on the 

amplitude of oscillations in the vibration platform for different heights of the compacted concrete 

mixture. 

From the graphs (Fig. 6, a) it follows that the coefficient γ has an insignificant effect on the 

magnitude of the amplitude of oscillations x at the height h =0.10 m h=0.20 γ. For height m, the 

h=0.3 amplitude of oscillations decreases with increasing  , which is explained by the significant 

influence of dissipative resistance forces, since in such a situation the vibration system "machine – 

medium" operates in an approximate resonance mode.  A noticeable influence on the amplitude is 
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exerted by the speed of propagation of oscillations (Fig. 6.b), the value of which is included in the 

determination of the numerical values of the resistance coefficients of dependence (7). 

 

    
                                          а                                                                  б 
Fig.6. Results of calculations of the amplitude of vibrations of the vibration platform at different heights of 

the compaction concrete mixture: a-effect of the resistance coefficient γ;  The ratio of the frequency of  

oscillations   to the velocity of propagation of waves C  in a mixture 
c


. 

5. Discussion of the results. It was found that, in general, the motion of the vibrational 

system (Fig. 1) is described by equation (20) with four terms. The first three describe the natural 

oscillations of the system, of which the first two are determined only by the initial conditions, and 

the third reflects the concomitant oscillations by the external force applied to the system. The last 

term defines forced oscillations according to the law of change of external force. This result is new 

and shows that the vibrations of the vibration system are not strictly harmonic,  which is confirmed 

by the above graphs. The dynamics of movement of the vibration system "machine – environment" 

is investigated, taking into account the resistance forces. Analytical dependencies for determining 

the amplitude of oscillations and natural and resonant frequencies of oscillations have been obtained. 

The degree of influence of the coefficients (7) of the reactive and active components of the resistance 

of the sealing medium on the amplitude of oscillations of the vibration machine (9) is determined. 

From the graphs (Fig. 6, a) it follows that the coefficient   has an insignificant effect on the mag-

nitude of the amplitude of oscillations x at the height 0,10h =  m 0,20h =    . For height m, the 

0,3h = amplitude of oscillations decreases with increasing  , which is explained by the significant 

influence of dissipative resistance forces, since in such a situation the vibration system "machine – 

medium" operates in an approximate resonance mode.  A noticeable influence on the amplitude is 

exerted by the speed of propagation of oscillations (Fig. 6.b), the value of which is included in the 

determination of the numerical values of the resistance coefficients ,a d of dependence (7). 

6. Conclusions. 

1. It was established that ensuring effective operating modes and parameters is constrained 

by discrepancies between calculated and actual parameters. This is due to the complexity of the 

processes occurring in the compacted mixture and the use of empirical formulas that are valid only 

within the assumptions and conditions under which the research was conducted. 

2. A research method was proposed that considers the vibration system "machine-medium" 

as a system governed by a single vibration process. The development of the model for this combined 

dynamic system is based on modern advances in the classical theory of mechanical oscillations for 

the subsystem "vibration machine," and the compacting medium subsystem is modeled based on 

the theory of dispersed media as continuous models. 

3. Analytical dependencies were obtained for determining the oscillation amplitude and the 

natural and resonant frequencies of oscillations. The degree of influence of the reactive and active 

components of resistance in the compacted medium on the oscillation amplitude of the vibration 

machine was determined. 
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